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Electrons in a quantum-dot spin valve, consisting of a single-level quantum dot coupled to two ferromag-
netic leads with magnetizations pointing in arbitrary directions, experience an exchange field that is induced on
the dot by the interplay of Coulomb interaction and quantum fluctuations. We show that a third, superconduct-
ing lead with large superconducting gap attached to the dot probes this exchange field very sensitively. In
particular, we find striking signatures of the exchange field in the symmetric component of the supercurrent
with respect to the bias voltage applied between the ferromagnets already for small values of the ferromagnets’
spin polarization.
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I. INTRODUCTION

The rapidly evolving field of spintronics1,2 not only takes
into account the charge degree of freedom of electrons as
does conventional electronics but additionally makes use of
the spin degree of freedom thereby opening up interesting
new applications as well as addressing questions of funda-
mental research. Quantum dots coupled to ferromagnetic
electrodes provide one particular example of spintronic sys-
tems. They can be experimentally realized in a number of
ways, e.g., using metallic nanoparticles,3–6 semiconductor
quantum dots,7–11 quantum dots defined in nanowires,12 car-
bon nanotubes,13–17 or single molecules.18

From the theoretical point of view, many different prop-
erties of such systems have been studied, e.g., spin-diode
behavior in quantum dots coupled to one ferromagnetic and
one normal lead,19,20 the angular dependence of
conductance,21–28 negative tunnel magnetoresistance,29–32

and current noise.33–37 Of particular interest are quantum
dots coupled to noncollinearly magnetized ferromagnets.
These systems on the one hand show a nonequilibrium spin
accumulation on the quantum dot that has the tendency to
block transport. On the other hand, there is an effective ex-
change field acting on the dot spin that is caused by virtual
tunneling between the quantum dot and the leads and gives
rise to a precession of the spin accumulated on the dot.21,22

The interplay between these two effects gives rise to a num-
ber of interesting transport properties as, e.g., a deviation
from the harmonic dependence of the linear conductance on
the angle enclosed by the magnetizations,21 a u-shaped con-
ductance curve with a broad region of negative differential
conductance,22 a nontrivial bias dependence of the Fano fac-
tor and characteristic features in the finite-frequency noise at
the Larmor frequency associated with the exchange field38 as
well as to a splitting of the Kondo resonance.39–43 Detecting
the exchange field in experiments is quite challenging as
most of the effects listed above rely on a strong spin block-
ade of the quantum dot that exists only for large polarizations
of the leads. For this reason, the exchange field has so far
been detected only by the induced splitting of the Kondo
resonance in C60 molecules,18 InAs quantum dots,9,12 and

carbon nanotubes16 coupled to ferromagnetic leads, respec-
tively.

Here, we propose an alternative way to experimentally
access the influence of the exchange fields on the transport
properties in the regime of weak tunnel coupling by adding a
superconducting electrode to the quantum dot as shown
schematically in Fig. 1. Quantum dots coupled to supercon-
ducting electrodes are interesting on their own as they show
an interplay between strong Coulomb interaction that has the
tendency to destroy superconducting correlations on the dot
and nonequilibrium effects that can help to induce a super-
conducting proximity effect on the dot. In the subgap regime,
transport between the quantum dot and superconductor takes
place via Andreev reflections which have been investigated
theoretically extensively.44–52 Further studies involved mul-
tiple Andreev reflections53,54 and transport in the Kondo
regime.55–61 Experimentally, quantum dots coupled to super-
conductors have been realized using carbon nanotubes,62–68

graphene,69 semiconductor nanowires,12,70,71 self-assembled
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FIG. 1. �Color online� Schematic model of a quantum-dot spin
valve with an additional superconducting electrode attached. A
single-level quantum dot with excitation energies � and �+U is
coupled to noncollinearly magnetized ferromagnets and a supercon-
ductor via tunnel barriers.

PHYSICAL REVIEW B 82, 094514 �2010�

1098-0121/2010/82�9�/094514�9� ©2010 The American Physical Society094514-1

http://dx.doi.org/10.1103/PhysRevB.82.094514


semiconductor quantum dots,72 and single molecules.73

For the system under investigation, we compute the cur-
rent into the superconductor using a real-time diagrammatic
approach22,50–52,74–77 in the limit of an infinite superconduct-
ing gap. This is a reasonable approximation as long as the
excitation energies of the quantum dot are smaller than the
gap such that subgap transport takes place. The current has,
in general, even and odd components with respect to the
voltage applied between the ferromagnets. We find that the
even component exhibits clear evidences of the exchange
field even for small polarizations of the ferromagnets.

The paper is organized as follows. We introduce the
model for the quantum dot coupled to the three electrodes in
Sec. II. In Sec. III, we describe how to apply the real-time
diagrammatic theory to the system under investigation. We
present our results in Sec. IV and give a conclusion in Sec. V.

II. MODEL

We consider a quantum-dot spin valve, i.e., a quantum dot
coupled to two ferromagnetic electrodes with magnetizations
pointing in arbitrary directions nL, nR. In addition to the two
ferromagnetic electrodes we consider a third superconduct-
ing lead tunnel coupled to the quantum dot. The Hamiltonian
of the system hence consists of different terms describing the
ferromagnetic electrodes, the superconducting electrode, the
quantum dot and the tunnel coupling between the dot and the
leads

H = �
r

Hr + HS + Hdot + Htun. �2.1�

We describe the ferromagnetic electrodes with chemical po-
tentials �r, r=L,R, by means of the free-electron Hamilto-
nians

Hr = �
k�

��rk� − �r�ark�
† ark�, �2.2�

where the quantization axis is chosen to be parallel to the
magnetization of the respective lead. We assume the densi-
ties of states �r����=�k���−�rk�� to be constant, �r����
=�r�, and spin dependent. The asymmetry between majority
��=+� and minority ��=−� spins is characterized by the po-
larization pr= ��r+−�r−� / ��r++�r−� which varies between p
=0 for a nonmagnetic electrode and p=1 for a halfmetallic
electrode with majority spins only.

We model the superconductor by means of a mean-field
BCS Hamiltonian with a superconducting gap 	, which can
be chosen to be real and positive without loss of generality.
We choose the chemical potential of the superconductor as
reference for energies and set it to zero. In the limit of an
infinite superconducting gap, 	→
, the single-level quan-
tum dot tunnel coupled to the superconductor is described by
the effective dot Hamiltonian78–80

Hdot,eff = �
�

�c�
†c� + Uc↑

†c↑c↓
†c↓ −

�S

2
c↑

†c↓
† −

�S

2
c↓c↑,

�2.3�

where � is the energy of the spin-degenerate level in the dot
and U denotes the Coulomb energy for double occupancy of

the dot. The effective pair potential �S in Eq. �2.3� is the
tunnel-coupling strength between the dot and the supercon-
ductor and it is related to microscopic parameters by �S
=2��tS�2�S, where tS is the tunneling amplitude between dot
and superconductor and �S is the normal-state density of
states of the superconducting lead.

The effective dot Hamiltonian accounts for the coupling
to the superconductor exactly. This allows us to deal with an
arbitrarily strong superconductor-dot coupling �S. The eigen-
states of the effective dot Hamiltonian �2.3� are given by the
singly occupied states �↑ � and �↓ � as well as by the two
states �+� and �−�. The latter ones are linear combinations of
the empty and doubly occupied dot states �0� and �d�
=c↑

†c↓
†�0�

�+ � =
1
�2
��1 −

�

2�A
�0� −�1 +

�

2�A
�d�� , �2.4�

�− � =
1
�2
��1 +

�

2�A
�0� +�1 −

�

2�A
�d�� . �2.5�

The energies of the eigenstates are given by E↑=E↓=� and
E
=� /2
�A. Here, �=2�+U denotes the detuning from the
particle-hole symmetry point while 2�A=��2+�S

2 measures
the energy difference between the states �+� and �−�.

We define the Andreev bound-state energies as the exci-
tation energies of the dot in the absence of tunnel coupling to
the ferromagnets

EA,��� = ��
U

2
+

�

2
��2 + �S

2, �,�� = 
 . �2.6�

As we allow arbitrarily oriented magnetizations of the fer-
romagnetic leads, nL, nR, it turns out to be most convenient
to quantize the spin on the quantum dot in the direction of
nL�nR. In this case, the tunnel coupling between the dot and
the ferromagnets is characterized by

Htun,F = �
rk

tr

�2
	ark+

† �ei�rc↑ + e−i�rc↓�

+ ark−
† �− ei�rc↑ + e−i�rc↓�
 + H.c., �2.7�

i.e., the majority/minority spin electrons of the leads couple
to both spin up and spin down states of the quantum dot. In
the tunnel Hamiltonian, �L=−�R=� /2 is half the angle be-
tween the magnetizations. The tunnel matrix elements tr can
be related to the spin-dependent tunnel couplings 2��tr�2�r�.
The total tunnel coupling to lead r is given by �r
=��2��tr�2�r� /2.

III. TECHNIQUE

In order to compute the transport properties of the
quantum-dot spin valve with an additional superconducting
lead, we use the diagrammatic real-time technique74–77 in its
extension to ferromagnetic22 and superconducting50–52 leads.

The basic idea of this approach is to integrate out the
noninteracting, fermionic degrees of freedom of the elec-
trodes. The remaining system consisting of the quantum dot
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is then described using a reduced density matrix �red with
matrix elements P�1

�2 = ��2��red��1�. For convenience, we intro-
duce for the diagonal matrix elements the abbreviation P�

= P�
�.
For a quantum dot coupled to both ferromagnetic and su-

perconducting leads the reduced density matrix in the sta-
tionary limit takes the form

�red =�
P+ 0 0 0

0 P− 0 0

0 0 P↑ P↓
↑

0 0 P↑
↓ P↓


 �3.1�

in the basis �+�, �−�, �↑ �, and �↓ �. We note that while coherent
superpositions of states �↑ � and �↓ � have to be taken into
account as we are dealing with a noncollinear geometry, co-
herent superpositions of �+� and �−� can be neglected if �S
��r �which we assume from now on� as they are at least of
order O��r� and therefore do not contribute to transport in
the limit of weak tunnel coupling between dot and ferromag-
nets.

In the stationary state, the reduced density matrix obeys a
master equation of the form

0 = Ṗ�1

�2 = − i�E�2
− E�1

�P�1

�2 + �
�1��2�

W
�1�1�
�2�2�P

�1�
�2�. �3.2�

While the first term on the right-hand side describes the co-
herent evolution of the system, the second term characterizes
the dissipative coupling to the electrodes. The quantities

W
�1�1�
�2�2� are generalized transition rates in Liouville space. For

tunnel couplings small compared to the temperature, �r
�kBT, they can be evaluated in a perturbation expansion in
the tunnel couplings as irreducible self-energy blocks of the
dot propagator on the Keldysh contour. The corresponding
diagrammatic rules are summarized in Appendix A.

Using the effective dot description and introducing the
average spin on the dot as

Sx =
P↑

↓ + P↓
↑

2
, Sy =

P↑
↓ − P↓

↑

2i
, Sz =

P↑ − P↓
2

�3.3�

as well as the probability P1= P↑+ P↓ to find the dot singly
occupied, we can split the master equation into one set for
the occupation probabilities and one set for the average spin.
We introduce the abbreviations: �r
=�r�1


�
2�A

� and fr���



= fr

�EA,����, where fr

+���=1− fr
−��� denotes the Fermi func-

tion of lead r. The equations governing the occupation prob-
abilities are given by

0 =
d

dt�P+

P−

P1

 = �

r

Ar�P+

P−

P1

 + �

r

prbr�Sr · nr� , �3.4�

where the expressions for the matrices Ar and the vectors br
are given in Appendix B. We see that similar to the case of
an ordinary quantum-dot spin valve,22 the dynamics of the
occupation probabilities couples to the average spin accumu-
lated on the quantum dot.

As in the case of the normal quantum-dot spin valve, the
master equation for the average dot spin can be cast into the
form of a Bloch equation

dS

dt
= �dS

dt
�

acc
+ �dS

dt
�

rel
+ �dS

dt
�

prec
, �3.5�

where the first term

�dS

dt
�

acc
=

1

2�
r
��− �r+fr++

− + �r−fr−−
+ �P+

+ �− �r−fr+−
− + �r+fr−+

+ �P−

+
1

2
�− �r−fr−−

− − �r+fr−+
− + �r+fr++

+

+ �r−fr+−
+ �P1�prnr �3.6�

describes the nonequilibrium spin accumulation on the dot
due to spin-dependent tunneling of electrons onto the dot.
The relaxation of the dot spin is described by the second
term

�dS

dt
�

rel
= −

1

2�
r

��r−fr−−
− + �r+fr−+

− + �r+fr++
+ + �r−fr+−

+ �S ,

�3.7�

which is proportional to the spin accumulated on the dot. The
dot spin relaxes either by electrons with a given spin leaving
the dot to the ferromagnetic leads or by electrons with a spin
opposite to that on the dot entering the dot from the ferro-
magnets, thus forming a spin singlet. Finally, the last term

�dS

dt
�

prec
= �

r

S � Br �3.8�

describes a precession of the dot spin due to an exchange
field which is given by

Br =
prnr

2�
�
���

���r� Re ��1

2
+ i

��EA,��� − �r�

2�
� , �3.9�

where � is the digamma function. The exchange field is the
manifestation of a spin-dependent level renormalization due
to virtual tunneling between the dot and the ferromagnetic
electrodes. We emphasize that the coupling to the supercon-
ductor influences the exchange field only through the posi-
tion of the Andreev bound states. As can be seen in Fig. 2,
the exchange field takes on large values whenever one of the
Andreev bound states is in resonance with the Fermi level of
the ferromagnet. This behavior is similar to the ordinary
quantum-dot spin valve where the exchange field becomes
maximal at resonance as well.

The particle current flowing from the ferromagnetic leads
into the quantum dot is given by

Ir = �
��1�2

W��1

Ir��2P�1

�2. �3.10�

Here, W��1

Ir��2 are the current kernels that can be obtained from
the generalized transition rates W��1

��2 by multiplying the rate
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with the number of electrons transferred from lead r to the
quantum dot in the process associated with this rate. We find

Ir = ��r−fr−−
+ − �r+fr++

− �P+ + ��r+fr−+
+ − �r−fr+−

− �P− +
1

2
��r+fr++

+

+ �r−fr+−
+ − �r−fr−−

− − �r+fr−+
− �P1 − pr��r−fr−−

− + �r+fr−+
−

+ �r+fr++
+ + �r−fr+−

+ �S · nr. �3.11�

In the stationary state, the current into the superconductor is
related to the currents between the dot and the ferromagnets
by current conservation, which is automatically satisfied in
the real-time diagrammatic theory74–77

IS = IL + IR. �3.12�

Experimentally, one can therefore measure either the current
flowing into the superconductor or the difference between
the currents that enter from the left and leave to the right
ferromagnet. In the following discussion we will however
always refer to the current into the superconductor for sim-
plicity.

IV. RESULTS

In this section, we discuss how the current into the super-
conductor can be used to probe the exchange field. We con-
sider symmetrically biased ferromagnets, �L=−�R��,
while the superconductor is kept at �S=0. We split the cur-
rent into a component that is a symmetric function of bias,
IS

sym���= 	IS���+ IS�−��
 /2, and a component that is an an-
tisymmetric function of bias, IS

antisym���= 	IS���− IS�−��
 /2.
The symmetric component of the current turns out to be very
sensitive to the exchange field.

A. Symmetric quantum-dot spin valve

We start our discussion by considering a symmetric sys-
tem, i.e., we assume the tunnel couplings to the left and right
ferromagnet to be equal, �L=�R�� /2. Furthermore, we as-
sume both ferromagnets to have the same polarization p. In

this particular case, due to symmetry, the current possesses
only a symmetric component with respect to �, i.e., IS���
= IS

sym���.
We first explain why the supercurrent vanishes for collin-

ear geometries. We then show that the spin accumulation in
the noncollinear configuration gives rise to a finite current
into the superconductor that is sensitive to the exchange
field. Finally, we show that a spin relaxation on the dot re-
duces the supercurrent but nevertheless still allows a detec-
tion of the exchange field.

In general, the current into the superconductor vanishes in
the small-bias regime EA−+���EA+−, where the quantum
dot is Coulomb blockaded. For a symmetric system, the cur-
rent also vanishes in the large-bias regime, ��EA++ or �
�EA−−, where all dot states contribute to transport, due to
particle-hole symmetry. Hence, we can expect a finite current
into the superconductor only in the intermediate bias regime,
EA−−���EA−+ or EA+−���EA++. According to Eq.
�3.11� and �3.12�, the supercurrent in this regime is given by

IS =
�

2
�− 2

�

�A
P+ +

�

�A
P− −

�

2�A
P1 − pS · �nL + nR�

+
p�

2�A
S · �nL − nR�� . �4.1�

For parallel magnetizations, where the spin accumulation on
the dot vanishes and the dot occupation probabilities satisfy
P1=2P−=1 /3, we find that the supercurrent vanishes also in
the intermediate bias regime. To understand the mechanism
behind this behavior, let us consider the transport processes
that contribute to the superconductor. Notice that in the in-
termediate regime the state �+� is inaccessible. We find that
the contributions from the first two processes shown in Fig. 3
cancel each other. They both transfer equal amounts of
charge between the dot and the superconductor when project-
ing the state �−� onto the state �0�. Furthermore, both pro-
cesses have identical rates �a factor of 2 due to spin is com-
pensated by P1=2P−�. In consequence, they give rise to a
vanishing supercurrent for any value of the detuning �. Simi-
larly, one can show that the other two processes that probe
the doubly occupied component of �−� cancel each other.

The situation is more complex in the antiparallel configu-
ration due to the finite spin accumulation on the quantum
dot. Processes 1 and 4 in Fig. 3 which build up the spin
accumulation have rates proportional to 1+� / �2�A� and 1
−� / �2�A�, respectively. Hence, in sum the spin accumulation
is insensitive to the detuning �. A similar reasoning holds for
processes 2 and 3 that relax the dot spin. As the supercurrent
vanishes at �=0 due to particle-hole symmetry, it therefore
has to vanish for all values of �.

For noncollinear geometries, we find a finite current into
the superconductor, cf. Fig. 4. To understand the mechanism
leading to the finite current, we first neglect the exchange
field in our discussion and turn to its effect afterwards.

In contrast to the antiparallel configuration, in the noncol-
linear geometries the spin accumulation on the quantum dot
�and therefore also the probability to find the dot singly oc-
cupied� is sensitive to �. This can be understood by consid-
ering again the processes 1 and 4 of Fig. 3 which are respon-
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FIG. 2. �Color online� Amplitude of the exchange field Br ·nr in
units of pr�r for kBT=0.01U, �S=0.4U as a function of the chemi-
cal potential �r and detuning �. The peaks and dips map out the
Andreev bound states whose energies are indicated by dotted lines.
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sible for the spin accumulation. While process 1 builds up a
dot spin in the direction of +nL, process 4 build up a spin in
the direction of −nR. For �=0 both processes contribute
equally to the spin accumulation. We therefore find that a
spin builds up in the direction of nL−nR. For positive �,
process 1 dominates and hence the spin points toward nL,
while for negative �, process 4 dominates and the spin points
toward −nR. As for finite � the left-right symmetry is broken,
the cancellation between the supercurrent contributions from
processes 1 and 2 �3 and 4, respectively� does not hold any
longer and a finite supercurrent can flow. Neglecting the ex-
change field, the following analytic expression for the cur-
rent into the superconductor can be found:

IS =
��S

2p4� sin2 �

�A�48�A
2 − 2p2	2�2�1 + 2 cos �� − �S

2�1 − cos ��
�
.

�4.2�

The above formula shows that the current into the supercur-
rent in the noncollinear geometry flows for any value of the
polarization p�0. It is only the magnitude of the current that
is affected by the strength of the polarization. Using realistic
parameters, p=0.3, U�1 meV, �S�0.5 meV, �
�100 �eV, and �=� /2, we obtain as an order of magni-
tude of the current IS�1 pA which is challenging but not
impossible to measure with current techniques.

If the exchange field is taken into account, there is still a
finite current flowing in the intermediate bias regime. As the
dot spin now precesses in the energy-dependent exchange

field, it acquires a finite z component while simultaneously
the x and y components which influence the supercurrent, cf.
Eq. �4.1�, get reduced and show a nontrivial bias depen-
dence. In consequence, the supercurrent also deviates from
its steplike behavior in the absence of the exchange field and
even changes sign. Furthermore, there is a finite supercurrent
flowing in the large bias regime because the symmetry-
breaking spin accumulation on the dot persists in this regime.

The nontrivial bias dependence of the supercurrent opens
up the possibility to detect the exchange field experimentally,
even for small polarizations. This is in strong contrast to the
other exchange field effects that arise in the sequential tun-
neling regime, as, e.g., negative differential conductance22,31

or the nontrivial dependence of current, Fano factor and
higher current cumulants on the angle between the
magnetizations.22,37,38 While for quantum dots that couple
only to ferromagnetic leads all exchange field effects rely on
a strong spin blockade, in the system under investigation
here, it is the cancellation between different transport pro-
cesses involving the superconductor that provides the neces-
sary sensitivity to the spin accumulation and the exchange
field. To illustrate this, let us consider a system where the
superconductor is replaced by a normal metal that is coupled
to the quantum dot with coupling strength �N. In Fig. 5 we
show the current into the normal metal evaluated to first
order in �N, an approximation valid if �N�kBT. We find that
now there is indeed a finite current for all magnetic configu-
rations because for a positive �negative� detuning only pro-
cesses where electrons leave �enter� the dot to �from� the
third lead are possible. In consequence, the exchange field
effects become practically invisible for small polarizations as
they are obfuscated by the large background current.
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I S
/Γ
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−1.5 −1 −0.5 0 0.5 1 1.5
µ/U

−0.02
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I S
/Γ

p = 0.95
Bex = 0

FIG. 4. �Color online� Current into the superconductor for a
symmetric coupling, �L=�R, �L=−�R�� and perpendicularly
magnetized ferromagnets, �=� /2. In the upper panel, we have p
=0.3, while in the lower panel p=0.95. The solid �black� curves
take into account the exchange field, it is neglected in the dashed
�red� curves. Other parameters are �=0.2U, �S=0.4U, and kBT
=0.01U.

1.)
|−〉 → |1〉

3.)
|1〉 → |−〉

2.)
|1〉 → |−〉

4.)
|−〉 → |1〉

FIG. 3. �Color online� Transport processes in the proximized
quantum-dot spin valve. In the first process, the �−� state is pro-
jected onto the �0� state, pushing a Cooper pair into the supercon-
ductor as indicated by the double arrow. Then an electron tunnels in
from the left lead, leaving the dot in the singly occupied state.
Similarly, in the second process, an electron leaves the singly oc-
cupied dot to the right lead. Then, a Cooper pair enters from the
superconductor to bring the dot in the state �−�. As both processes
probe the empty contribution to �−�, their rates are proportional to
1+� / �2�A�. Similarly, the other two processes probe the doubly
occupied component of �−� such that their rates are proportional to
1−� / �2�A�.

PROBING THE EXCHANGE FIELD OF A QUANTUM-DOT… PHYSICAL REVIEW B 82, 094514 �2010�

094514-5



Finally, we discuss the effect of an intrinsic spin relax-
ation on the dot which we model by adding a term −S /� to
the right-hand side of the spin master equation, Eq. �3.5�.
Possible mechanisms for such a spin relaxation are the cou-
pling to nuclear spins in the quantum dot81–83 or spin-orbit
interaction on the dot.84,85 In Fig. 6, we show the current into
the superconductor for different values of the relaxation time
�. As the relaxation time is decreased, the current is reduced
in agreement with our discussion above which showed that
the spin accumulation on the dot is crucial to get a finite
current. However, we also notice that the exchange field ef-
fects still remain visible when considering a finite relaxation.
This shows that an experimental detection of these effects
should be feasible.

B. Asymmetry effects

We now turn to the discussion of the situation where �L
��R. We parametrize the tunnel couplings as �L
= �1+a�� /2 and �L= �1−a�� /2 such that the parameter a
with −1�a�+1 characterizes the degree of asymmetry. In
this case, the antisymmetric component of the supercurrent
with respect to the applied bias, IS

antisym���, is in general non-
vanishing.

We find that for a�0 a finite supercurrent arises in the
intermediate and large bias regime for all magnetic configu-
rations. For parallel and antiparallel magnetizations, respec-
tively, the supercurrent is given by

IS
P = �

2a�S
2�1 − p2��2�A − a��

�A��3 + a2p2��S
2 − �1 − p2��	a�A − �3 − a2��
�

,

�4.3�

IS
AP = �

a�S
2�1 − p2�

�A	�1 + 3p2�a� + 2�3 + p2��A

�4.4�

in the intermediate bias regime, while it is given by

IS
P = �

a�1 − p2��S
2

�1 − p2��2 + �S
2 , �4.5�

IS
AP = �

a�1 − p2��S
2

�1 − a2p2��2 + �S
2 �4.6�

in the large bias regime. In these formulas we assumed the
current to flow from the left to the right. For a current in the
opposite direction, one has to substitute a→−a. Since the
corresponding formulas for the noncollinear case are rather
lengthy, we do not give them here.

From the above formulas we read off that the total super-
current increases as the asymmetry is increased. Further-
more, we find that the current is decreased when the polar-
ization is increased. This means that for experimentally
realistic polarizations an asymmetry can give rise to a back-
ground current that dominates over the exchange-field signal.
This problem can be overcome by looking at the symmetric
and antisymmetric components of the current with respect to
the voltage.

In Fig. 7, we show these two quantities as a function of
applied bias for small and large polarizations. For small po-
larizations, we find that the antisymmetric contribution
shows a steplike behavior that does not reveal any exchange
field effects and is nearly insensitive to the magnetic con-
figuration. In contrast, the symmetric contribution again re-
veals the characteristic peaks and dips that we encountered
already in the symmetric system and that are a clear indica-
tion of the exchange field. For large polarizations, the system
behaves rather similarly. The symmetric current contribution
shows clear signs of the exchange field while the antisym-
metric part is dominated by current steps. However, we now
find that also the antisymmetric contribution is sensitive to
the exchange field.

Hence, we have seen that an asymmetric coupling to the
ferromagnets gives rise to a finite supercurrent for all mag-
netic configurations that could make the experimental detec-
tion of the exchange field effects difficult for small polariza-
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FIG. 6. �Color online� Influence of spin relaxation on the super-
current in the noncollinear configuration. As the spin accumulation
is reduced, the supercurrent is decreased. However, the exchange
field effects still prevail. Polarization is p=0.95, other parameters as
in Fig. 3.
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FIG. 5. �Color online� When the third lead is a normal metal
instead of a superconductor, a finite current flows for any magnetic
configuration, thereby completely obscuring the exchange field ef-
fects for small polarizations. Parameters are �=0.4U, �r=�N, p
=0.3, and kBT=0.01U.
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tions. To overcome this obstacle, we propose to measure the
current symmetrized with respect to the bias voltage as this
allows to recover the exchange field effects.

V. CONCLUSIONS

We analyzed transport through a quantum-dot spin valve
with an additional superconducting electrode. We find that in
the case of noncollinear magnetization even for small polar-
izations, the symmetric component of the supercurrent with
respect to the applied bias voltage exhibits strong exchange-
field effects. In particular, for a system that couples sym-
metrically to the ferromagnets which are at opposite bias, the
supercurrent has only a symmetric component in bias volt-

age. In this case, a finite supercurrent can only flow for non-
collinear magnetizations, as this configuration breaks the
left-right symmetry for finite detuning �. Due to the presence
of an exchange field acting on the dot spin in noncollinear
geometries, the supercurrent exhibits a nontrivial bias depen-
dence and even changes sign. Interestingly, these effects oc-
cur for any polarization of the ferromagnets p�0. Further-
more, they are robust toward a relaxation of the dot spin. For
systems with different couplings to the ferromagnets, the su-
percurrent becomes finite for any magnetic configuration. We
find that for small polarizations, the contribution due to the
asymmetry of the system dominates over the one due to non-
collinearity. We show, however, that by considering the su-
percurrent symmetrized with respect to the applied bias volt-
age, one can extract the exchange field effects also in this
case. We therefore propose to experimentally access the ex-
change field by measuring the bias dependence of the super-
current.
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APPENDIX A: DIAGRAMMATIC RULES

In this appendix, we give the diagrammatic rules �see also
Refs. 22, 50–52, and 74–77� necessary to compute the ker-

nels W
�1�1�
�2�2� and W

�1�1�
Ir�2�2� that occur in Eqs. �3.2� and �3.10� in

the limit of an infinite superconducting gap, 	→
.
�1� Draw all topological different diagrams with vertices

on the propagators. Assign states � and corresponding ener-
gies E� to the corners and all propagators. The vertices are
contracted pairwise by tunneling lines that either conserve or
flip the spin.

�2� Assign to all diagrams a resolvent 1 / �	E+ i0+� for
each section on the contour between two adjacent vertices.
Here 	E is the energy difference between the left- and right-
going propagators and tunneling lines.

�3� The tunneling lines involving the ferromagnetic elec-
trode r give rise to a factor of

�r

2� fr

��i� if they do not flip the

spin of the tunneling electron. If they flip it from up to down,
they give rise to a factor of p�

2�ei�rf r

��i�. Flipping the spin in

the opposite direction gives rise to the complex conjugate of
the aforementioned factor. Here, the upper �lower� sign refers
to lines running backward �forward� with respect to the
Keldysh contour.

�4� Associate with each vertex that annihilates �creates� a
dot electron with spin � a factor ��2�c���1� ���2�c�

† ��1��. Here
�1 and �2 are the states that enter and leave the vertex, re-
spectively.

�5� Assign an overall prefactor �−i��−1�a+b, where a is the
number of vertices on the lower propagator and b is the
number of crossings of tunneling lines.

�6� Integrate over the energies of the tunneling lines �i
and sum over all diagrams.

�7� To obtain the generalized current rates W
�1�1�
Ir�2�2� multi-

ply each rate W
�1�1�
�2�2� with a factor for all tunneling lines that
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FIG. 7. �Color online� Symmetrized and antisymmetrized cur-
rent into the superconductor as a function of bias voltage for differ-
ent magnetic configurations and small �p=0.3, upper panel� and
large �p=0.95, lower panel� polarizations. The asymmetry is a
=0.05, other parameters as in Fig. 4.
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are associated with lead r that is the sum of the following
numbers: �a� +1 if the line is going from the lower to the
upper propagator, �b� −1 if the line is going from the upper to
the lower propagator, and �c� 0 else.

APPENDIX B: EQUATION FOR THE OCCUPATION
PROBABILITIES

In this appendix we give the expressions for the quantities
appearing in Eq. �3.4� which can be obtained as linear com-

binations of the kernels W
�1�1�
�2�2� by reformulating the master

Eq. �3.2� in terms of the occupation probabilities and average
dot spin. We employ the abbreviations: �r
=�r�1


�
2�A

� and

fr���

 = fr


�EA,����, where fr
+���=1− fr

−��� denotes the Fermi
function of lead r.

The matrix Ar depends on the position of the Andreev
excitation energies and it reads

Ar =�
− �r+fr++

− − �r−fr−−
+ 0

�r−

2
fr−−

− +
�r+

2
fr++

+

0 − �r−fr+−
− − �r+fr−+

+ �r+

2
fr−+

− +
�r−

2
fr+−

+

�r+fr++
− + �r−fr−−

+ �r−fr+−
− + �r+fr−+

+ −
�r−

2
fr−−

− −
�r+

2
fr−+

− −
�r+

2
fr++

+ −
�r−

2
fr+−

+ 
 . �B1�

The vectors br describing the influence of the average spin on the dot on the diagonal probabilities are given by

br = � �r−fr−−
− − �r+fr++

+

�r+fr−+
− − �r−fr+−

+

− �r−fr−−
− − �r+fr−+

− + �r+fr++
+ + �r−fr+−

+ 
 . �B2�
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